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Abstract—As power and energy become dominant constraints
on large-scale platforms, software support is necessary to measure
and control energy and power usage. Current generation systems
rely on vendor-specific measurement and control interfaces, mak-
ing portable power-aware computing techniques a major concern
for future systems. To address this portability challenge, Sandia
National Laboratories has collaborated with other laboratories,
universities and major vendors including Intel, IBM, AMD,
Cray, HP, Adaptive Computing, and Penguin Computing to
develop a Power API for High Performance Computing. The
API standardizes measurement and control of power and energy
for large-scale systems. It provides several interfaces targeting
diverse requirements, from application-level fine-grained control
and measurement to facility-level accounting. It enables high-
frequency measurement and exposes valuable metadata to assess
the utility of the observed values. The API also includes a
rich statistics-gathering interface that scales from individual
component-level measurements up to and including whole-system
statistics in both real-time (active measurements) and historical
(database logging) contexts. This article details the design of the
Power API and presents a case study using an implementation
of the API.

I. INTRODUCTION

Exascale computing denotes the use of supercom-
puter platforms capable of operating at speeds ex-
ceeding 1 ExaFLOP/s. This goal requires very large
clusters of high performance compute nodes com-
bined with the fastest network connections available.
Unlike typical large commercial data centers, Exas-
cale scientific computing requires that only a few
very large jobs (potentially a single job) occupy the
entire system at any one time. Compared to systems
designed to support many small jobs, managing the
overall power consumption of the system can be
more difficult since jobs and resources cannot be
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reallocated on a fine-grained basis. These leadership
class systems, whether deployed for open science
or classified processing, will soon require tens of
megawatts of power. Power has become a primary
design constraint pushing the limits of commercial
power delivery and greatly increasing the cost of
facility infrastructure to support these platforms. The
cost of powering these platforms over their typical
useful lifetime, three to five years, may soon rival
their acquisition cost.

There are various power measurement and control
devices available today. The most ubiquitous are
those included on modern CPUs, namely Intel’s
running average power limit (RAPL) controls and
AMD’s similar TDP Power Cap. These mechanisms
provide capabilities to control power usage as well
as measure power and energy consumption on the
CPU. These mechanisms are accessed through ma-
chine specific registers (MSRs) on the chip. As these
MSRs are protected resources in Linux, methods for
reading and writing to them are necessary to enable
user-level measurement and control. Some vendors,
such as Cray, provide proprietary solutions, while
open-source solutions such as libMSRsafe [1] are
also available. Less common, but more encompass-
ing solutions are node-level devices that measure
power using expansion cards or internally resident
stand-alone measurement devices. Examples include
PowerInsight [2], Wattprof [3] and PowerMon [4].
These devices collect telemetry out of band, typ-
ically employing in-line hall effect chips and/or
shunt resistors. They often have the capability of
measuring more than just CPU power, sometimes
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providing whole node and individual component
level measurements. The methods by which they
interface with the node vary. PowerInsight can com-
municate by USB port or through Ethernet con-
nections. WattProf uses the PCIe bus and future
versions will offer Ethernet support. PowerMon
works through a USB interface. All three devices
offer sampling rates in the hundreds to thousands of
Hertz range. Stand alone external devices are also
common for measuring power and energy, such as
WattsUp devices. They are installed in between the
wall plate and the node power supply external to the
machine. Like some of the internal devices, WattsUp
meters use a USB interface, with the possibility of
using Ethernet as well. Other manufacturer-specific
solutions are also available, such as iLO from HP.

Along with the increasing number of measurement
and control mechanisms available come an equally
diverse and numerous set of interfaces. These in-
terfaces can vary greatly from one manufacturer to
another, and as such much of the power control
software in use today is vendor or device specific.
The development of tools for specific platforms is
costly and inefficient. A single power measurement
and control API for systems is highly desirable to
reduce investment costs in tools and power-aware
runtimes for each successive machine generation.
The US Department of Energy (DOE) and similar
agencies throughout the world are major consumers
of supercomputer platforms of a variety of architec-
tures from many vendors. A single standard API for
controlling power consumption and collecting power
measurements on these different systems is essential
to ensure that future supercomputers provide the
mechanisms needed to control power, for exam-
ple, to avoid breaching contracts with power utility
providers and exceeding physical power limits on-
site.

The Power API [5] provides a common, cross-
vendor interface to measure and control the power
usage of hardware, including support for many of
the existing solutions on the market. The overall
scope of the Power API is broad, encompassing
API function calls, with interfaces for applications
to measure and react to their own execution, high

level interfaces to support tools for administrative
level whole system accounting tasks, and script-
ing interfaces for system administrators to enact
quick custom power control. The Power API solves
many of the issues that exist in in today’s power
measurement and control system environment and
facilitates evolving requirements. However, provid-
ing a portable interface alone is not enough to
provide a truly useful power measurement and
control interface. A key element to measurement
is understanding the accuracy and frequency of
the measurements. Power measurement can have
multiple different layers of measurements, with the
highest level measurements exposed to the user. For
example, a measurement may be taken at 10 kHz at
a low-level hardware sampling, but the aggregated
average power may be exposed only at a rate of
1 Hz. As such, a measurement sampled at 1 Hz
may not be fast enough to capture shorter duration
power fluctuations that are important to the real
power usage of the system, but if the measurements
are the average of 10 kHz samples the resulting
measurements may be accurate enough for some
use cases. The Power API has associated metadata
with each measurement point to inform the user
about the underlying sampling methodology and
accuracy. This allows the user to determine whether
the measurement capability can be used effectively
for their particular use case.

II. THE POWER API

The “High Performance Computing - Power Ap-
plication Programming Interface Specification” [5]
was developed at Sandia National Laboratories in
collaboration with major vendors, laboratory and
academic partners. The organizational structure be-
hind the API’s development follows those of several
other very successful standards, with a vendor-
neutral national laboratory funded through the fed-
eral government of the United States leading an
effort that has community input and public re-
view feedback with the goal of becoming a public
community-led standard. The goal of developing a
common API for power measurement and control
was realized with the first specification release in
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2014. The API continues to evolve and grow as
further capabilities are added and new language
bindings are supported. While most existing in-
terfaces are mature, work continues on some of
the highest level interfaces as research and the
development of future systems better informs the
high level reporting requirements. The Power API is
specified primarily as a C API, as C is the preferred
language for low-level software on HPC systems
and is universally supported, however, alternative
language bindings such as Python are provided. Im-
plementations of the Power API may internally use
whatever language is most convenient. For example
the Power API reference implementation developed
by Sandia is primarily written in C++ with user-
visible C interfaces provided externally.

A. High-Level Design

The design philosophy behind the Power API is
to allow for flexibility in future system architectures
and power measurement and control capabilities. As
such, it is designed to allow great freedom in de-
scribing system architectures and handling requests
to many devices, including requests for information
or capabilities that may not be supported in today’s
systems but are expected to be available in future
Exascale class machines.

The Power API creates a system description in
a hierarchical form, with basic supported, but not
mandatory, objects starting with a platform and
descending through the system to cabinets, boards,
nodes, sockets, and core object types. Additional de-
vices can be inserted where applicable in the system
description, including memories, network interfaces,
accelerators and more generic power plane objects.
Power planes provide a useful control/measurement
point for cases where power measurements or con-
trols are aggregated amongst underlying objects. An
example of this would be a power plane for a CPU
where the individual cores do not have individual
measurements available, but an aggregate measure-
ment is available (two cores per power plane, for
example. This hierarchical form can be expressed
statically or can be built dynamically through a
system description tool. The design of the hierarchy

allows for current tools such as hwloc [6] to accu-
rately describe current systems while still allowing
for possible future system architecture changes that
depart radically from contemporary systems. An
example of this hierarchy in Figure 1 shows a simple
small scale system using core Power API object
types.
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Fig. 1. Example of a simple machine hierarchy for the Power API.

User interaction with the API follows the philos-
ophy of making hard tasks possible to accomplish
and easy tasks easy to accomplish. The Power API
design also chooses potential complexity in imple-
mentation rather than in the user interface whenever
possible. The rationale behind this approach is that
the implementation can better deal with complexity
once, where experts can be utilized more easily, and
avoid complexity in the code that will be written
more often, the Power API calls themselves at the
user level.

B. Roles

The roles that users of the Power API can assume
best illustrate the encompassing nature of the API.
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A diagram showing all of the roles and how they
interact with different levels of the interface is
shown in Figure 2. In the figure, role names are
often proceeded with “HPCS” to indicate the pri-
mary focus of the specification, High Performance
Computing Systems. One of the high level roles,
Accounting, provides an interface for generating
reports and metrics of the system at different levels
of granularity, from the whole system down to
individual components. The System Manager role is
provided to represent the responsibility of dictating
overall system-level policies, such as scheduling
priorities and facility limitations. The Administrator
role represents the traditional IT system administra-
tor function, managing day to day operation of the
system, but from a power and energy perspective.
This interface is aimed at providing easy access
to control power throughout the system on both a
coarse and fine-grained basis as well as providing
useful information on power measurements to better
understand immediate and long term system needs.
The administrator can choose between C and Python
interfaces for these tasks, where Python scripts are
desirable for quick unique scripting requirements,
the C interface is useful for building command line
tools requiring high-performance for frequently used
operations. The Resource Manager role is oriented
toward resource managers and job schedulers. Policy
decisions communicated by the System Manager are
translated into job policy on the running system,
such as power caps that represent time of day
differences in power costs. Interfaces are available
for the Resource Manager to mine information or
leverage information provided by the system from
the Monitor and Control role (for example). The
next role is the generic User role. This interface
provides all of the capabilities potentially exposed to
end-users of an HPC system, primarily taking mea-
surements and potentially controlling power within
bounds enforced by the system administrators or
resource manager. The Application role is the first-
person interface for user applications running on the
system. In many ways this is similar to the User role,
but with lower-level requirements where necessary
for describing the needs of HPC applications. The

last two roles directly interact with hardware and
expose the fundamental measurement and control
capabilities of the system. While user-space level
hardware interaction may be possible on some sys-
tems and therefore enable other roles to interact with
hardware directly, the Operating System (OS) and
Monitor and Control roles are required to interact
with hardware on all systems. This is due to the
high level of privileges required to interact with
most hardware. The OS role is primarily a node
centric role while the Monitor and Control role is a
broader focused system level management role. The
Monitor and Control role is largely analogous to
traditional Reliability Availability and Serviceability
(RAS) systems.
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Fig. 2. Top Level Conceptual Diagram representing the interaction of roles
with different levels of the Power API interfaces.
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C. Using the Power API

The Power API provides many core functions
shared by the different interfaces offered. Upon
initialization, the user is presented with a context,
basically the user’s window into the functionality
available to their role/user combination by the im-
plementation. The system view exposed likewise
depends on the combination of the role and the
individual user. For example, an application may
only have access to the hardware (the node) that
it is currently executing on. A system administra-
tor would commonly have access to all platform
resources. Navigation functions allow any user (or
role) to navigate to the device (object) in the system
hierarchy with which the user seeks to interact.
The API provides functions for creating groups of
objects, which can then operated upon using group
functions that mirror the capabilities of functions
used to interact with individual system objects.
Groups can also be combined using several differ-
ent functions to create unions or intersections and
differences of the two groups.

Each object in the system hierarchy has attributes
associated with it, which correspond to measurement
or control interfaces available, and exposed, for that
individual object. For example, for a CPU core
object, valid attributes may include power, energy,
performance state, sleep state and low level mea-
surements such as voltage and current.

The metadata about object-attribute pairs can be
easily fetched using the Power API metadata inter-
face. Metadata is particularly important for deter-
mining the utility of data obtained using the Power
API interfaces, such as the frequency or accuracy of
measured values.

Figure 3 demonstrates an example of using
the Power API metadata and attribute inter-
faces. After initializing a Power API context, the
PWR_CntxtGetEntryPoint() interface is used
to get the object representing the caller’s entry
point for navigating the machine hierarchy. In the
interest of space, this example assumes the en-
try point returned is the local node’s object but
in general the Power API’s navigation interfaces
would be used to find the desired object. Next,

the PWR_ObjAttrGetMeta() metadata inter-
face is used to retrieve the expected accuracy
of energy measurements obtained from the local
node’s PWR_ATTR_ENERGY attribute. Finally, the
PWR_ObjAttrGetValue() attribute interface is
used to measure the energy consumed by the
do_work() function. Since PWR_ATTR_ENERGY
is an energy counter, the difference of its value
between calls is used to calculate the energy con-
sumed.

PWR_Cntxt context;
PWR_Obj my_node;
PWR_Time timestamp1, timestamp2;
double energy1, energy2, accuracy;

// Initialize and get my node object
PWR_CntxtInit(PWR_CNTXT_DEFAULT,

PWR_ROLE_APP, "MyContext", &context);
PWR_CntxtGetEntryPoint(context, &my_node);

// Get accuracy of energy counter for my node
PWR_ObjAttrGetMeta(my_node, PWR_ATTR_ENERGY,

PWR_MD_ACCURACY, &accuracy);

printf("Accuracy +/- %f percent\n", accuracy);

// Measure energy consumed by do_work()
PWR_ObjAttrGetValue(my_node, PWR_ATTR_ENERGY,

&energy1, &timestamp1);
do_work();
PWR_ObjAttrGetValue(my_node, PWR_ATTR_ENERGY,

&energy2, &timestamp2);

printf("do_work() consumed %f J in %f ns\n",
energy2-energy1, timestamp2-timestamp1);

Fig. 3. Example of using Power API to measure energy usage of a function.

Another powerful use case for the Power API
is the collection of statistics. The API provides a
statistics interface that allows the user to gather
statistics on individual objects or groups of objects
for individual attributes. These statistics, such as
sum, max, min, and average, can then be further
reduced if desired to provide averages of sums on
multiple objects or find a maximum of maximums
and the object that it occurred on.

High-level application interfaces are provided to
allow the application to communicate to the system
(the OS or potentially an intelligent run-time layer).
These “hints” include informing the system about
application phases such as serial or parallel regions
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that can be exploited at the node level to potentially
deliver more performance and power savings. The
application could also hint that it is in a communica-
tion phase on a particular node which would allow
node level alterations but also allow an intelligent
runtime system to coordinate between the nodes
allocated to shift additional power to nodes which
remain in computation phases, for example.

D. Implementation

While commercial vendor implementations of the
Power API are in development, an open source refer-
ence implementation is available for early adopters.
The Power API reference implementation is archi-
tected to support the core functions of the API
in a single implementation, with multiple measure-
ment device support implemented through a plugin
architecture. This allows for rapid integration of
new measurement devices as well as power con-
trol points. The current implementation supports
many low-level hardware power measurement de-
vices, from common off-the-shelf solutions such as
WattsUp meters, to device/vendor specific methods
such as Intel’s RAPL. Support for more comprehen-
sive out-of-band power measurement devices, such
as PowerInsight from Penguin Computing, is also
provided.

The reference implementation is mostly complete.
Core functions, aside from historical data collection
and a subset of statistics functions for certain ob-
jects, are implemented. The reference implementa-
tion is currently integrating and optimizing large-
scale collection methods. The current functionality
in the reference implementation is sufficient for most
real-time data measurement and control use cases.
The reference implementation is currently deployed
as part of the Tri-lab operating system (TOSS) and
is running on several test and production platforms
at DOE laboratories. Reference implementation de-
velopment and research is conducted at small scale
on many of Sandia’s Advanced Architecture Test
Bed clusters [7]. Large scale testing and research
is being accomplished on the production Skybridge
cluster at Sandia National Laboratories.

The reference implementation incorporates a scal-
able framework for collecting measurements from

many different objects in a group at one time.
Although aggregation of results is implicitly em-
bedded in the object hierarchy of the Power API,
distributing the aggregation at multiple points in-
stead of a single aggregation point is an implemen-
tation optimization. The scalable distributed aggre-
gation method for the implementation has shown
good results at this early stage, before signifi-
cant performance optimization has been completed.
Figure 4 shows the initial scaling of collecting
basic energy samples from a number of nodes
in a large system. The microbenchmark used for
the results in Figure 4 measures the time that
1000 PWR_ObjAttrGetValue() requests take
to complete and divides by 1000. The test was
performed on Chama, a production supercomputer
at Sandia National Laboratories.

The Power API Reference Implementation was
developed alongside the specification and is publicly
available at http://powerapi.sandia.gov.

Fig. 4. Power API Energy data collection latency using multiple nodes.

E. Enabling Understanding

We have already put the Power API to use in
studies focusing on understanding the power con-
sumption of systems as well as understanding the ef-
fectiveness of power control methods on platforms.

Power management solutions are increasingly
available on large systems. One of the newest
control mechanisms on Cray Inc. supercomputers
is node-level power capping. Understanding how
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the power capping mechanism impacts performance
and how much power is consumed by state-of-
the-art production applications during execution are
important questions to answer. The Power API is
currently installed on a small Cray XC40 system at
Sandia National Laboratories that has the new node-
level power capping capability. Testing the power
capping mechanism on this system with CTH, a
widely-used solid mechanics application, has shown
the distribution of power samples under different
power caps. Figure 5 shows the cumulative dis-
tribution function for power samples for several
different node-level power caps for 96 nodes on
the test system. The Power API data show that
the power capping mechanism allows limited time
periods where the power draw can exceed the power
cap. These measurements reveal the consequences
of the power cap mechanism’s enforcement that is
based only on an average of samples in a given time
window [8]. The Power API has enabled collection
of all measurements on this system and enables
portable testing on other systems and with other
applications.
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III. RELATED WORK

Scalable collection mechanisms have been devel-
oped for a variety of use cases for other metrics. The

Lightweight Distributed Metric Service (LDMS) [9]
is a data collection and aggregation system used in
large systems. It works on a variety of hardware
including Cray systems and is complimentary to the
Power API as it collects data on a configurable set of
diverse metrics. Overlay networks are well-adopted
methods of collecting and aggregating data on large
systems. Approaches like MRNet [10] introduce a
second virtual network hierarchy on top of existing
networks that can be used for collection aggregation
purposes.

Many power measurement solutions (e.g., Pow-
erInsight [2], WattProf [11], Powermon [4], Power-
pack [12]) include APIs that are specific to their par-
ticular measurement solution. Power control APIs
have been developed that are specific to particular
systems and used as part of energy-saving tech-
niques like Oscar API [13].

Global Energy Optimization (GEO) is a energy
optimization framework developed by Intel [14]. It
manages job power bounds in a cluster while also
attempting to increase performance by tuning the
power consumption of systems involved in a job.
GEO has a scalable collection mechanism that is
based on MPI communication for individual job
measurement collection. Unlike the Power API,
GEO’s external interfaces are not proposed as a
standard [14], though they are open-source. Like the
Power API it can work in a distributed manner [15].

IV. EXPANDING ADOPTION

As part of a collaboration with Sandia and Los
Alamos national laboratories, Cray is implementing
portions of the Power API specification for de-
ployment on the Trinity supercomputer, ranked #7
on the June 2016 TOP500 list [16]. Additionally,
these partners are working with Adaptive Comput-
ing, makers of the Moab/Torque resource manager,
to enable intelligent power-aware job scheduling
decisions. These capabilities will leverage the Power
API implementation available on Trinity to demon-
strate that power budgets of large-scale supercom-
puters can be effectively managed. We intend to
explore power prediction on large systems such that
power schedules can be created and relayed to the
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power utility provider to anticipate demand from
such systems and therefore be proactive in power
generation based on short term future needs. These
efforts are intended to be forward thinking and
benefit future systems both within the DOE national
laboratories and the wider HPC community.

Many vendor partners have been involved with the
Power API specification and many plugins for the
reference implementation have been completed for
a variety of hardware. Current support is available
for Intel and AMD CPUs, Power Insight, Watt Prof,
WattsUp, Power Gadget, generic CPU registers, and
Cray’s XTPM measurement devices. We intend to
further expand this list of supported devices in
collaboration with vendors of power measurement
capable computing components.

Like any proposed standard, the Power API de-
pends on community interest to drive adoption and
implementation by HPC technology providers. The
Power API specification is presented as a starting
point. As this field evolves, the Power API specifi-
cation must necessarily evolve to include support
for future capabilities that will allow the entire
community to field HPC platforms in power and
energy constrained environments.
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